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Asthma is a chronic inflammatory airway disorder characterized by airway hyperresponsiveness and reversible airflow obstruction.
Subgroups of asthma patients develop airflow obstruction that is irreversible or only partially reversible and experience an
accelerated rate of lung function decline. The structural changes in the airways of these patients are referred to as airway
remodeling. All elements of the airway wall are involved, and remodeled airway wall thickness is substantially increased compared
to normal control airways. Airway remodeling is thought to contribute to the subphenotypes of irreversible airflow obstruction
and airway hyperresponsiveness, and it has been associated with increased disease severity. Reversal of remodeling is therefore of
paramount therapeutic importance, and mechanisms responsible for airway remodeling are feasible therapeutic targets for asthma
treatment. This paper will focus on our current understanding of the mechanisms of airway remodeling in asthma and potential
targets for future intervention.

1. Introduction

Asthma is a chronic inflammatory disorder of the airways
characterized by airway hyperresponsiveness (AHR) and re-
versible airflow obstruction that fluctuates over time. Asthma
used to be considered a single disease entity, but is increas-
ingly recognized as a disease with multiple subphenotypes
that differ in clinical severity, pathological findings, response
to therapy, and long-term outcome [1]. A subgroup of this
heterogeneous group of asthma patients manifests airflow
obstruction that is either irreversible or only partially re-
versible. Furthermore, some of these patients experience an
accelerated rate of decline in respiratory function compared
to healthy controls [2, 3]. In children with asthma defined
by wheezing diagnosed at age 7 and followed for 21 years,
lung function was essentially normal in patients who ceased
wheezing but was increasingly abnormal in those patients
who continued to wheeze frequently throughout life [4].

Airway inflammation, tissue injury, and subsequent ab-
normal repair lead to structural changes in the airway walls
of asthmatic subjects collectively referred to as airway remod-
eling. Airway remodeling is strongly suspected to result in
the physiologic subphenotypes of irreversible or partially
reversible airflow obstruction and accelerated lung function
decline [5]. Almost all elements of the airway wall have been

shown to be altered in fatal asthma [6, 7]. The changes occur
throughout the bronchial tree [8], but are most marked in
large membranous and small cartilaginous airways [9].
Similar findings occur in nonfatal asthma, although they are
less profound and localized predominantly to midsized and
small membranous airways less than 3 mm in diameter [6,
10]. This review will focus on our current understanding of
the pathology, pathogenesis, and physiologic consequences
of airway remodeling in asthma, and discuss potential targets
for therapeutic intervention.

2. Pathology and Pathogenesis of
Airway Remodeling

2.1. Airway Wall Thickening. In fatal asthma, airway wall
thickness is increased by between 50 and 230% compared
to normal controls, while in nonfatal asthma, the increase
ranges from 25–150% [11]. Increased wall thickening has
repeatedly been associated with increased disease severity,
including near fatal asthma [12–14]. These changes are
the result of epithelial cell alterations, subepithelial fibrosis,
submucosal gland hyperplasia, increased airway smooth
muscle mass, and increased airway vascularization [10, 15–
17].
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Figure 1: Airway remodeling (abnormal half of figure) involves almost all elements of the airway wall and occurs throughout the bronchial
tree. Although atopy-related inflammation is considered the primary cause of asthmatic airway remodeling, insults such as tobacco smoke
and viral pathogens induce a similar histologic phenotype.

Evaluation of airway wall thickening by multidetector-
row computed tomography (MDCT) is a promising non-
invasive technique for assessing airway remodeling [18].
Quantitative MDCT imaging allows precise measurement of
airway wall area (WA) and airway wall thickness (WT) out
to sixth-generation bronchi. Several studies have compared
pathologic changes of airway remodeling with increased wall
thickness as measured by MDCT. Both WA and WT percent-
ages have been shown to correlate with histologic basement
membrane thickening [19] and moderate correlations exist
between WA and WT percentage and epithelial layer thick-
ness [20]. In addition, quantitative CT measures, such as WA
and WT, at multiple airway generations appear to correlate
with FEV1 and bronchodilator responsiveness [20]. Thus,
quantitative CT scans, as a surrogate noninvasive measure
of remodeling of the airways, may be used as an endpoint
for targeted therapy to reverse airway remodeling or to
potentially predict those individuals at risk of progressive
remodeling; however, further evaluation of this modality is
needed.

2.2. Allergic Airway Inflammation. Chronic inflammation
that results in tissue injury with subsequent structural
change during tissue repair is a well-documented biological
phenomenon, for example, cirrhosis. Since chronic airway
inflammation is a striking feature of asthma, asthmatic
airway inflammation is often assumed to be the initiating
event for airway remodeling [21]. Most, but not all, asthma
is associated with atopy, and as such, asthma has largely been
regarded as an allergic disease [22]. In keeping with this
premise, a cellular infiltrate rich in lymphocytes, eosinophils,
mast cells, neutrophils, and macrophages [5] characterizes
asthmatic airway inflammation. Lymphocytic inflammation
is dominated by Th2-cells producing interleukin (IL)-4,
IL-5, and IL-13 (Figure 1) [23]. Overexpression of Th2
interleukins in mouse models has demonstrated changes
pathognomic of asthmatic airway remodeling. Overexpres-
sion of IL-13 resulted in subepithelial fibrosis, mucus meta-
plasia, and an inflammatory infiltrate rich in eosinophils
and macrophages [24]. IL-5 overexpression induced striking
airway eosinophilia, along with mucus metaplasia and
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subepithelial fibrosis [25]. While IL-4 overexpression led
to eosinophilia and mucus metaplasia, subepithelial fibrosis
in IL-4 overexpressing models has been unimpressive or
absent depending on the study [26, 27]. In addition, mice
overexpressing all three of these Th2 interleukin molecules
demonstrated AHR. Eosinophils and mast cells likely impact
the epithelial remodeling based on effects on barrier func-
tion, epithelial proliferation and desquamation, and goblet
cell formation [28]. These data indicate that airway remod-
eling is quite likely driven in part by the Th2 inflammation
characteristic of the asthmatic airway.

Several lines of evidence in animal models and humans
suggest that the Th2 hypothesis is an incomplete expla-
nation for asthma pathogenesis. First, many patients with
asthma do not have an identifiable allergic trigger for their
disease. Conversely, a significant number of patients with
atopy do not develop asthma [29]. Taken together, it is
reasonable to deduce that other triggers exist for generating
asthma. Second, the allergic and nonallergic forms of asthma
are pathologically indistinguishable from each other [30],
implying that remodeling occurs independent of atopic
inflammation. This suggests a remodeling pathway common
to all forms of remodeled asthma. Third, current anti-
inflammatory and allergen-reduction therapies (see below)
do not prevent the development of asthma or effectively
reverse airway remodeling once it has occurred [31]. Lastly,
airway remodeling occurs simultaneously with inflammation
and may indeed be necessary for the establishment of a
chronic inflammatory state [32]. These observations have
encouraged exploration of alternative mechanisms of airway
injury as the underlying mechanism of airway remodeling.

2.3. Epithelial-Driven Models of Airway Remodeling. While it
is likely that some aspects of airway remodeling are the end
result of allergen exposure and subsequent chronic allergic
inflammation, it is increasingly believed that predisposition
to asthma lies in a structurally and functionally defective
airway epithelium which links the inhaled environment
to underlying airway structures. This phenomenon is best
explained by the model of the epithelial mesenchymal
trophic unit or EMTU proposed by Holgate [[33] and
reviewed in [34, 35]]. In this model, both airway inflamma-
tion and remodeling are the consequence of repetitive envi-
ronmental injury to a defective airway epithelium by viruses,
air pollutants, or tobacco smoke (Figure 1) [22]. Injury leads
to interaction between the dysfunctional epithelium and the
underlying mesenchyme that results in amplification of the
inflammatory and remodeling responses in the underlying
layers of the airway wall with subsequently defective airway
repair [35].

Support for this model is increasingly robust. Evidence,
primarily from animal models, indicates that innate immune
responses to respiratory virus infections, for example, con-
tribute to the development of inflammatory airway disease
characteristic of asthma [36–39]. Paramyxoviral infection
of mice has been shown to produce acute bronchiolitis
resulting in airway inflammation and AHR. However, infec-
tion also results in a chronic inflammatory response with
airway remodeling and AHR phenotypes [40]. This chronic

response is not only strikingly similar to the inflammatory
response in the airways of asthmatic patients, but also persists
for over a year after mice have cleared the virus from the
airways. It has subsequently been shown that the chronic
inflammatory state is related to the severity of infection and
is produced by an innate epithelial immune response in
which natural killer T cells activate macrophages to produce
proinflammatory cytokines like IL-13, which contribute to
chronic mucous cell metaplasia [[41] and are reviewed in
[42, 43]]. The mouse model correlates well with clinical
findings. Paramyxoviral infections are a primary cause of
lower respiratory tract infection in infants and children [44],
and children with severe RSV bronchiolitis are predisposed
to development of a chronic wheezing illness in the absence
of both atopy and viral persistence in airway tissue [45, 46].

2.4. Epithelial Cell Alterations. Epithelial cell shedding, cil-
iated cell loss, and goblet cell hyperplasia have all been
described in asthmatic airways [6, 15, 47]. Epithelial shed-
ding has been noted in postmortem studies of asthmatic
airways, and sputum and BAL samples from asthmatic
patients contain increased amounts of epithelial cells [6, 48].
However, epithelial cell desquamation in bronchial biopsy
specimens from healthy nonasthmatic subjects appears sim-
ilar to that seen in biopsies from mild to severe asthmat-
ics [49, 50] suggesting that this phenomenon is related
to the sampling technique itself. Evidence of increased
epithelial cell proliferation contributing to thickening of the
epithelium and an increased lamina reticularis (also known
as subepithelial fibrosis, see below) has been observed in
patients with moderate to severe asthma (Figure 2) while
being absent in patients with mild persistent asthma, chronic
bronchitis, and normal controls [49]. These studies suggest
that thickening of the airway seen in severe asthma may
be due, in part, to airway epithelial proliferation (Figure 3),
although conflicting data exist (see below).

Goblet cell hyperplasia has been consistently demon-
strated in mild, moderate, and severe forms of asthma
(Figure 3), although the finding is particularly apparently
increased in severe and fatal asthma [51, 52]. Similarly, an
increase in the area of airway wall occupied by submucosal
mucus glands is a frequent finding in asthmatic airways,
and occurs in both fatal and nonfatal forms of asthma
[6]. Goblet cells produce mucin glycoproteins (MUC), 13
of which have been identified in human airways [53]. The
dominant mucin in humans is MUC5AC, which is expressed
in the airways of normal subjects and is upregulated in
asthmatic subjects [54]. Goblet cell hyperplasia has been
demonstrated following adoptive transfer of Th2 cells into
ovalbumin-challenged mice [55]. This is most likely the
result of Th2-driven interleukin expression (see above).
IL-13, in particular, signals through the STAT-6 signaling
pathway [5] and the effects of IL-13 overexpression in mice
are almost completely STAT-6 dependent [56].

Other changes observed in the airway epithelium lend
support to the EMTU hypothesis of asthma pathogenesis.
Epithelial injury is normally followed by upregulation of pro-
teins responsible for tissue repair. Expression of epithelial
growth factor receptor (EGFR) and MUC5AC are both
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Figure 2: Hematoxylin and eosin stained endobronchial biopsies from control, moderate asthmatic, and severe asthmatic patients. Lamina
reticularis (LR) and epithelium (Epi) are labeled. Note the increased thickness of both the LR and epithelium as asthma severity increases.
Mag = 20x.
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Figure 3: Endobronchial biopsy specimens from control, moderate asthmatic, and severe asthmatic patients stained with antiretinoblastoma
(anti-Rb) antibody, a marker of cell proliferation. Rb-positive cells stain brown. There is a significant increase in Rb-positive epithelial cells
as asthma severity increases. There is also an increase in the number and size of goblet cells (GB) in the epithelial layer as asthma severity
increases. Mag = 40x.

markedly upregulated in the epithelium of asthmatic patients
[57, 58], and have been shown to colocalize in goblet
cells [59]. Immunoreactivity to EGFR and the total area
of MUC5AC staining show a positive correlation in both
asthmatics and control subjects. Furthermore, activation of
EGFR has been shown to upregulate both mucin production
and goblet cell generation in human epithelial cells in
vitro [57]. Interestingly, increased airway expression levels
of EGFR are not associated with markers of increased cell
proliferation as would be expected in tissue undergoing
active repair [60] suggesting an innate defect of the asthmatic
epithelium to repair itself.

2.5. Subepithelial Fibrosis. The original report of airway re-
modeling described the phenomenon of basement mem-
brane thickening [61]. Electron microscopy has subsequently
shown that thickening occurs just below the true basement
membrane in a zone known as the lamina reticularis [17].
The lamina reticularis (Figure 2) is a collagenous layer
4-5 μm thick in control subjects. In asthmatics, lamina
reticularis thickness has been documented at between 7 and
23 μm [62]. Thickening is the result of extracellular matrix
deposition, primarily collagens I, III, and V [5]. In addition,
abnormalities of noncollagenous matrix, including elastin,
fibronectin, tenascin, lumican, and proteoglycans, have also
been described [17, 63, 64].

Subepithelial fibrosis occurs in children, and is similar
in extent to that seen in adults [65] suggesting that it is an
early finding of asthmatic airway remodeling. Subepithelial
fibrosis has also been reported in all severities of asthma [9,
66]. However, the specificity of subepithelial fibrosis is called
into question by studies that have identified severe asthmatics
without subepithelial fibrosis, and nonasthmatic subjects
with significant fibrosis [67–69]. Furthermore several func-
tional measurements of asthma show variable correlations
with the degree of fibrosis [66, 70–72] raising questions
about its functional consequences.

Myofibroblasts are probably key effectors of subepithelial
fibrosis. Myofibroblasts are specialized cells with pheno-
typic characteristics of both fibroblasts and myocytes [53].
They express α-smooth muscle actin, produce inflammatory
mediators, and are major producers of extracellular matrix
proteins necessary for tissue repair and remodeling.

Transforming growth factor- (TGF-) β mediates the ef-
fects of IL-13 overexpressing mice [73]. TGF-β is a cytokine
produced by multiple lung cells including epithelial cells,
macrophages, fibroblasts, lymphocytes, and eosinophils [53].
TGF-β induces fibroblasts to express α-smooth muscle actin
and assume a myofibroblast phenotype [74]. As part of nor-
mal wound repair, TGF-β induces expression and secretion
of multiple extracellular matrix proteins while also inhibit-
ing their degradation. In many diseases, excessive TGF-β
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results in an excess of pathologic tissue fibrosis leading to
compromised organ function [75]. Compared to controls,
TGF-β expression is increased in asthmatic airways and BAL
fluid. In addition, TGF-β levels correlate with the extent of
subepithelial fibrosis, airway fibroblast numbers, and disease
severity [76–78]. Thus, excess TGF-β production may be
pivotal for the development of subepithelial fibrosis.

Matrix metalloproteinases are zinc-dependent endopep-
tidases capable of degrading extracellular matrix molecules.
The dynamic equilibrium between matrix metalloprotein-
ases and their inhibitors is a critical determinant of matrix
remodeling [79]. The existence of increased subepithelial
fibrosis in asthmatic airways strongly suggests that a profi-
brotic balance exists between the two. In asthma, the most
important metalloproteinase molecules are MMP-9 and its
inhibitor, tissue inhibitor of metalloproteinase- (TIMP-)
1 [5]. Both MMP-9 and TIMP-1 levels are elevated in
airway biopsies and BAL fluid of asthmatic patients [80–
82]. However, compared to control subjects, asthmatics have
a significantly lower MMP-9 to TIMP-1 ratio supporting a
profibrotic balance (inhibition over degradation). In addi-
tion, the lower MMP-9 to TIMP-1 ratios correlate with the
degree of airway obstruction [83].

TGF-β is secreted from cells as a latent complex and
is targeted to the extracellular matrix by latent TGF-β
binding proteins for subsequent activation [84]. MMPs
regulate matrix-bound cytokine release [83], and activation
of TGF-β is MMP-9 dependent [73]. Therefore, the role of
elevated levels of MMP-9 in asthma may be related to TGF-β
activation and its downstream fibrotic sequelae [5].

Thickening of the lamina reticularis provides further
evidence for the idea of a dynamically interactive EMTU.
Epithelial disturbances have been shown to result in in-
creased levels of fibrogenic growth factors including both
the latent and active forms of TGF-β [33, 85]. This response
is enhanced in asthmatic epithelium compared to normal
controls, and the fibrogenic factors have been shown to
localize in mesenchymal elements underlying the injured
epithelium [86, 87] including the lamina reticularis. Thus,
the lamina reticularis may act as a conduit for transmission
of signals from an innately defective epithelium to deeper
tissues of the airway wall.

2.6. Increased Airway Smooth Muscle Mass. Increased airway
smooth muscle (ASM) mass is the most prominent feature
of airway remodeling [6], with ASM mass increasing dispro-
portionately compared to the increase in total wall thickness
[53]. It has been documented in both fatal and nonfatal
asthma [11], and correlates with both disease severity and
duration, being greater in fatal than nonfatal cases of asthma
[6, 7, 10] and greater in older patients with fatal asthma than
younger patients with fatal disease.

The increase in ASM mass may be the coordinated result
of increased myocyte size (hypertrophy), increased myocyte
number (hyperplasia), and potentially differentiation and
migration of mesenchymal cells to ASM bundles [88–91].
Controversy exists regarding the relative contributions of
hypertrophy and hyperplasia to ASM mass increases. The
evidence for hyperplasia is relatively convincing [90, 92].

However, support for hypertrophy is conflicting, in part be-
cause documentation of increased cell size (width) may be
subject to artifact resulting from cell shortening [32]. While
studies have documented hypertrophy of ASM in severe
asthma, particularly in smaller airways, other studies found
no evidence for ASM hypertrophy in mild-moderate asthma
[32].

Mitogens are chemical compounds that stimulate cell
division and trigger mitosis. Mitogens play an integral role in
the development of increased ASM mass typical of asthmatic
airways. Mitogens bind receptor tyrosine kinases (RTK), G
protein-coupled receptors (GPCR), and cytokine receptors.
These receptor systems are all capable of producing increases
in ASM mass in cell culture models [53]. The list of mitogens
is extensive, and includes TGF-β, IL-1β, IL-6, thrombox-
anes, leukotrienes, histamine, tryptase, serotonin, vascular
endothelial growth factor (VEGF), and numerous others [89,
93, 94]. The receptor systems regulate mitogenesis primarily
through the phosphoinositide 3′-kinase (PI3K) and extra-
cellular signal-regulated kinase (ERK) signaling pathways
[95, 96]. The PI3K and ERK pathways activate transcription
factors which phosphorylate D-type cyclins facilitating cell
cycle progression [53]. Almost all of these mitogens have
been identified in airway biopsies and BAL fluid from
asthmatic patients or are detected in asthmatic airway cell
cultures [21]. They may therefore represent targets for
modulation of airway smooth muscle in asthmatic disease.

ASM cells are often noted in close proximity to the airway
epithelium. This epithelial-muscle distance was measured
at 67 μm in asthmatics compared to 135 μm in controls
[70]. It has been postulated that mesenchymal airway cells
differentiate into ASM with subsequent migration of the
new ASM cells into muscle bundles [97]. Whether these
phenomena occur in vivo is unknown, but reports indicate
that cultured human ASM cells migrate in response to
mitogenic stimuli [98]. Many of the mitogens involved in cell
proliferation also induce ASM cell migration including TGF-
β, IL-1β, and VEGF [21, 53].

2.7. Bronchial Neovascularization. Increased vascularity is
frequently associated with chronic inflammation, and in-
creased airway vascularity is well documented in asthma
[16, 99]. Compared to controls, bronchial biopsies from
asthmatic patients demonstrate an increase in the number
and cross-sectional area of blood vessels, predominantly cap-
illaries and venules, especially in the lamina propria [98, 100,
101]. It has been suggested that neovascularization worsens
disease through increased vascular congestion, airway edema
and inflammation, and global wall thickening [5]. In support
of this idea, increases in airway vessel number have been
shown to correlate with both disease severity and AHR
[100, 102, 103].

VEGF is an angiogenic growth factor. It is a mitogen for
vascular endothelial cells inducing endothelial cell prolifer-
ation and migration while inhibiting apoptosis. VEGF is an
important factor in diseases associated with abnormal angio-
genesis and wound repair [104]. Overexpression of VEGF in
mice induces marked airway angiogenesis along with signifi-
cant airway edema [105]. Interestingly, VEGF overexpressing
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mice also demonstrate increased Th2 cytokine expression,
including IL-13 and TGF-β, and have evidence of subep-
ithelial fibrosis and increased ASM mass. Furthermore, IL-
13 overexpression is associated with increased levels of
VEGF suggesting that a positive feedback loop promoting
Th2 polarization may exist in asthmatic airways [106].
VEGF levels in sputum and BAL fluid from asthmatics are
significantly increased and appear to correlate with disease
activity [98, 107, 108].

3. Physiologic Consequences of
Airway Remodeling

Functional data increasingly support the idea that remodel-
ing-induced structural changes contribute to the subpheno-
types of AHR and irreversible or partially reversible airflow
obstruction [109, 110]. There are many potential etiologic
mechanisms that link altered airway anatomy and asthmatic
pathophysiology, but most are beyond the scope of this
review.

The role of small airways in producing airflow obstruc-
tion and AHR seems to be greater than that of larger airways
[111, 112]. Peripheral lung resistance is increased in all sever-
ities of asthma, even mild cases [113, 114]. Heterogeneity
of peripheral bronchoconstriction is a major determinant
of airflow obstruction, creating large increases in the load
against which patients must breath [115, 116]. Although
heterogeneous bronchoconstriction is well documented in
wild-type animals and nonasthmatic human subjects [117–
119], mathematical models indicate that heterogeneity of
peripheral bronchoconstriction is significantly increased in
asthmatic patients when compared to normal controls [120,
121].

Increased ASM mass is thought to be the most likely
cause of AHR [122]. Asthmatic ASM exhibits increased con-
tractility [123, 124], a finding initially ascribed to increased
total ASM mass [7, 8, 10]. However, results from studies
comparing ASM force generation in asthmatic ASM and
normal controls are contradictory [125–127], in large part
because of the difficulty in normalizing measured force to
ASM mass [128]. A more likely explanation of AHR in
asthmatic patients is an increase in the maximal velocity of
shortening (Vmax) of ASM cells [128, 129]. Experimental
evidence supporting an increase in Vmax includes data from
human [124, 130] and animal models [131].

Noncontractile elements of airway remodeling also con-
tribute to AHR [109]. Increased airway extracellular matrix
is one noncontractile element that may contribute to AHR.
Decreased airway compliance is well documented in asth-
matic patients [132, 133] and has been found to correlate
inversely, although weakly, with increases in subepithelial
fibrosis [134]. Therefore, increased extracellular matrix con-
tent may contribute to nonreversible airway obstruction by
reducing airway distensibility. It has also been postulated that
increases in extracellular matrix lead to an excess of matrix-
bound cytokines and retention of soluble inflammatory
mediators [135]. This results in worsening airway inflamma-
tion with subsequent chronic persistence of established AHR.

Finally, contractile and noncontractile elements of the
remodeled airway wall may interact to increase airflow ob-
struction and AHR. Application of cyclic stresses to airway
segments reduces ASM contractility [136, 137]. Decreased
airway distensibility may reduce the cyclic stresses transmit-
ted to ASM during breathing, reducing the cyclical stretching
of ASM [138, 139]. ASM adapts to this attenuated stimulus
by assuming a shorter resting length while retaining its
ability to generate force. This mechanical plasticity, as the
phenomenon is known, is an important feature of ASM biol-
ogy affecting its contractile function [140]. The shortened
muscle fibers enhance the airways predisposition to undergo
excessive constriction during stimulation [110].

4. Therapeutic Targets for Airway Remodeling

The natural history of airway remodeling is poorly under-
stood [9]. While the physiologic subphenotypes are more
obvious in older patients with more severe disease of longer
duration [141], airway remodeling is known to occur early
on in the disease course [32]. Clinical trials of therapeutic
intervention to prevent airway remodeling are currently lack-
ing. Reversal of existing remodeling is therefore an important
therapeutic objective since remodeling may often be present
even at the time of asthma diagnosis.

4.1. “Anti-Inflammatory” Therapy. Animal studies of aller-
gen-challenged models suggest that airway remodeling can
be prevented, but also suggest that it cannot be fully
reversed once initiated [142]. In general, therapies aimed
at immunomodulation have proved disappointing. These
include therapies directed against T cells (azathioprine,
cyclosporine, and methotrexate) and Th-2 cytokine blockade
(IL-4, IL-5 (see below) and IL-13) [143]. Some positive
clinical data has been obtained, specifically with the use
of corticosteroids, but in general, the data are mixed. In
one study, treatment of asthmatic patients with inhaled
corticosteroids (ICS) for 1 year demonstrated reductions
in both subepithelial fibrosis and AHR [144]. The authors
attributed the decrease in AHR to both reduced airway
remodeling and decreased airway inflammation. However,
other studies have shown mixed results. While they have
demonstrated significant reductions in AHR, these same
studies demonstrated either lack of airway remodeling after
8 weeks of ICS therapy [145], or no change in lung function
(specifically postbronchodilator FEV1% predicted) when
compared to placebo, despite treatment with ICS for 4 to 6
years [146].

4.2. Targeted Immunotherapy. Airway eosinophils are a key
component of Th2 inflammation and are thought to be key
effectors of both chronic inflammation and airway remod-
eling in asthma [21]. IL-5 is a key mediator of eosinophil
activation and results in increase in the number of circu-
lating, airway, and sputum eosinophils in mice [147]. Initial
trials with mepolizumab, an anti-IL-5 monoclonal antibody,
were disappointing. Although circulating eosinophils were
dramatically reduced, airway eosinophils were only depleted
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by approximately 55% and there was no observable effect
on circulating T cells [148, 149]. In addition, no significant
effect on asthma outcomes or AHR were noted [149–151].
Subsequent trials of mepolizumab in severe asthma patients
with persistent sputum eosinophilia have demonstrated a
significant reduction in airway wall thickness measured by
quantitative CT scanning (RB1 WA%/body surface area). In
addition, significant reductions in the levels of circulating
and sputum eosinophils were also noted when compared
to placebo [152, 153]. However, no effects on AHR were
identified.

Treatment with omalizumab, an anti-human IgE mono-
clonal antibody, has well-documented efficacy in improving
asthma outcomes in a subgroup of patients with moderate to
severe persistent asthma [154–159]. Patients in this subgroup
demonstrate a confirmed atopic component and remain
uncontrolled despite high-dose inhaled corticosteroids and
at least one additional controller therapy [160]. Omalizumab
inhibits the binding of IgE to the high-affinity IgE receptor
(FcεRI). It does so by binding to an epitope on the IgE
molecule to which the FcεRI would bind [161]. Omalizumab
resulted in significant reductions in sputum eosinophil
counts and an 80% reduction in the number of airway tissue
eosinophils. Even more striking was an almost complete
reduction in airway cells staining positive for FcεRI (includ-
ing basophils and mast cells) and a significant decrease in the
number of airway T and B cells [162].

The therapeutic utility of anti-IgE therapy stands in stark
juxtaposition to that of anti-IL-5 therapy. The differences
suggest that either the (relatively) small reduction in airway
eosinophilia mediated by IL-5 blockade is insufficient to
produce a therapeutic effect, or that the effects of anti-IgE
therapy result from attenuation of multiple effector cells
in the asthmatic inflammatory cascade and not solely a
reduction in tissue eosinophils [35].

4.3. Bronchial Thermoplasty. Bronchial thermoplasty (BT)
delivers thermal energy to the airway wall in a controlled
manner to reduce excessive ASM [163]. The procedure has
been well studied in severe persistent asthma that is not well
controlled with inhaled corticosteroids and long-acting beta-
agonists [164, 165]. Long-term followup of BT study patients
supports the efficacy and safety of BT out to 5 years [166].
Lung function (FEV1 and FVC) remained stable over five
years of followup. However, while studies have established
small but significant improvements in PC20 doubling in
patients undergoing BT when compared to controls for
periods of up to 3 years after the procedure [166], there has in
general been a lack of evidence demonstrating reduction in
AHR. In the largest trial of bronchial thermoplasty to date
[164], a subset of participants (100 treated with thermo-
plasty, 50 received sham bronchoscopy) underwent CT scans
before and one year after treatment. Qualitative analysis
of these images demonstrated no evidence of airway or
parenchymal injury related to bronchial thermoplasty and an
increase in bronchial wall thickening in those receiving sham
bronchoscopy [167]. Therefore, thermoplasty may represent
a mechanism by which smooth muscle can be abrogated

resulting in the prevention of progressive remodeling in
severe asthma.

5. Conclusions

There is now a substantial body of evidence document-
ing typical structural changes in the airways and lung
parenchyma of asthmatic patients. These changes most
likely contribute to the AHR and irreversible or partially
reversible airflow obstruction seen in subgroups of asthmatic
patients, especially those with more severe disease. The
mechanisms responsible for these changes present viable
therapeutic targets for the prevention and treatment of
airway remodeling in asthma.
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